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1 The Collatz Conjecture

The Collatz Conjecture, also known as the 3n + 1 Conjecture, is one of the
unsolved problems in number theory. The setting of the problem is simple.
Let’s define Af as

3ntlif p is odd,

% if n is even.

Af(n) = { (1)

The conjecture states that for any n, if you apply this function enough times,
it will hit 1. In this paper, I will be calling this function the step function.

2 Redefining the Step Function

The previous definition of the step function is good. However, it is expressed
partially mathematically. A person might use this function to fix such an issue.
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This function is equal to 1 when x is odd and equal to 0 when the number
is even. We can use such a function to define the step function.

h(z)

Af(z) = x(2.5h(z) + 0.5) + h(x)

Af(x) = x(2.5ﬂ +0.5) + 1=

5 5 (3)

This is a better formula. However, this isn’t defined for real numbers x
because of (—1)*. We will devise a different formula to make one that works
with real numbers. The formula should oscillate back and forth between two
lines, the y = 3z + 1 and the y = §. We know that a function that oscillates
between a and b is defined as

Where ¢ is any function oscillating between -1 and 1. Now, again, let’s
redefine the step function.
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f(z)
Fa) = 3.5:102+ 1 n 2.5$2+ 1 cos(az +b)

cos(ax + b)

Let’s pick a to be 7 so that the frequency of the cos wave would be 1. Then

f2)=1
44 3cos(ax +b) =1
cos(ax +b) = —1
cos(2m +b) = -1

b=cos !(-1)=m

The final function looks like this.

3.5 1 25 1
_ T+ i T+

Af(x) 5 5 cos(mzx + ) (5)
Afa) = 3.51:2+ 1 2.51:1+ ! cos(ra) ©
Af(r) = 35z +1— (22&: + 1) cos(mz) )

Such a function is defined for all real numbers, not only for integers. A graph
of such a function looks like the following.

The two lines here are blue and violet. They are the y = 3z + 1 and the
y = 5. The red curve is the step function using the formula (5). This formula



will be used for the step function throughout the paper. What about defining
the function using sin?

35z +1  25r+1

Afw) = =25 .

sin(ax + b)

As with cos let us set the a to . Then let us calculate b.

f2)=1
. 1 2 1
& 5x2—|— + 5x2—|— sin(ax +b) =1

44 3sin(rx +b) =1
sin(2r 4+ b) = -1
=sin"'(-1) = —7/2
Then the final equation using sin looks like the following.

35x+1 25z+1 7
Af(x) = 5 5 sin(rx — 5) (8)

Another way to write the step function is the following.

Af(z) = 1.75x + (—1.252 — 0.5) cos(wz) + 0.5 9)

3 Developing Theorems
First let’s define some basic lemmmas.
| Lemma 1 Vz € N: Af(z) e N
This follows right from the initial definition of the Collatz Conjecture.
| Lemma 2 3z e R\ Z: Af(z) e N

This is also quite obvivous, such lemma comes from the function’s graph.
An example of a number that saticfies the statement is ~ 3.619. Consider the
section of the step function graph from 0 to 0.2.
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Looking at this graph, notice the section where Af(z) < x. Let’s define H
as the following.

Defl Vi eRAz>0Az< H:Af(z)<x
Then we can state the following.
Lemma 3 Vze RAz>0Ax < H:Af(Af(...(z)...))=0

We can even state something stronger than this.

Theorem 1 Vz e RAx > H : Af(Af(...(z)...)) #0

4 Similar Numbers

When dealing with paths developed by iteratively applying the step function, a
simple idea comes to mind when considering the similarities: Call two numbers
alike if the path until 1 of one number is contained within the second number’s
path as a prefix. A related definition I will introduce is similarity; two numbers
are considered similar if one number’s path is until a number less than itself is
contained within the same kind of path of the second number as a prefix. I will
denote the set of all similar numbers to = as STMy(x), and the set of all alike
numbers to x as SIM (x). Let us look at how to compute similar numbers; as
an example, pick z = 5 then one must first calculate the path til a number less
than 5 (denoted as PAx(5) )

PA#(5):<é 126 2 i) (10)

Let us now write down this path as a function by applying the exact same
operations done to the numbers 5, but now with .
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Then, the claim of the fundamental theorem is as follows:
SIMy(5)={x€Z|3x+1=0 (mod4)} (12)
SIMy(5) ={x€Z]|3x=3 (mod4)} (13)
SIMy(5)={zxe€Z|xz=1 (mod4)} (14)

In other words, any « for which PAys(x) € N is similar to . The only way
for this statement to be untrue is that we have broken the rules somewhere.

e Case 1) We somewhere divide by two an odd number.
e Case 2) We 3x + 1 a even number.

In the first case, whatever comes next will never hit a hole number, so it won’t
be registered as similar. In the second case, an even number when dividing by
two, we will return to case 1. This empowers one to calculate similar numbers
and their properties efficiently.

For any x € N the set SIMy(z) has the following form.

SIMy(z) ={x €Z |3 +c=0 (mod 2°)} (15)
Thus, similar numbers are distributed in a very particular way through-
out the natural numbers; the difference between any two consecutive similar
numbers is a power of two. This allows us to introduce a concept such as the
coefficient of similarity of two natural numbers (denoted as C'SIMy(z), which
is defined to be the logarithm base 2 of the constant difference between two
consecutive similar numbers. Using the previous example, one can conclude
that CSIMy(5) = 2, because 4 = 22,
We can also make theorems about the CSITM (z). For example, it is trivial
to realize that if x ~ y (meaning = and y are not similar), then.

Vn € SIM(z) :Vm e SIM(y) :n#m (16)

Consider I and J then there must be no a and b that the following is true.

T +4q-2C5IM(I) — j 4 p. 9CSIM(J)
J T =gq-20SIMI) _p 9CSIM(J)
(2C5IM(D) gCSIMU)Y | J _ |

gmin(CSIM(D,CSIM() | J _ (17)
Meaning

VvI,JEN: 2min(CSIM(I),CSIM(J)) JfJ— I (18)

For example, let us take numbers 3 and 5. Because 3 ~ 5 we know that
min(CSIM(3),CSIM(5)) > 2.



5 Analyzing Infinite Paths

Consider Collatz Conjecture false, then a number M must exist such that the
path is infinite. This is a bit hard to work with; we can replace this with
an analogous statement that M has an infinite path until a number less than
itself; in other words, M never goes lower. This can be easily achieved by
introducing induction over the natural numbers or simply selecting the smallest
counterexample. Here, I will try to consider some examples of infinite paths
and prove their non-existence to understand better the nature of the paths of
the counterexample numbers.

Let us consider an infinite path, where the operations applied to the number
would interchange one after another. The goal here is to consider the value of
SIMy(x) as we add more and more operations; in a sense, I will analyze the
behavior of STMy(X) in the limit of interactions of the step-function. I will
denote by I"™(x) the generated path after n iterations.

SIMy(I*(z)) ={z € N|32z+1=0 (mod 2)}

SIMy(I*(z)) = {3%2;1“} ={z€N|92+5=0 (mod4)}
SIMy(I%(x) = ...={zx €N|272+19=0 (mod 8)}
SIMy(I%(x)) =...={z € N|8lz +65=0 (mod 16)}

It is quite simple to prove and observe the general formula for such an
equation.

SIMy(I*(z)) ={z € N|3"2+3"—-2"=0 (mod 2")} (19)

Due to 2" =0 (mod 2™), one can simplify the equation even further.

SIMy(I*"(z)) ={zr €N |3"(z+1)=0 (mod 2")} (20)

And then again, noticing the factor of x4+ 1, we can substitute in x := z+1,
thus the needed modular equality needed to be solved is the following.

3"r =0 (mod 2") (21)

Such equality can be easily solved; one must find multiples of 2™, such that
they are divisible by 3"; in other words,

277,

One can see that due to the fundamental theorem of arithmetic, k = 3"y,
thus © = 2"y, where y is any natural number. Going backward from here,
back to the original equation, we are left with an exact equation describing
SIMy(I™(z)).



SIMy(I*"(x)) = {2"x — 1| z € N} (23)

Let X be the minimal value of the set SIM(I?"(z)), then as n — oo, we
have X — oo, thus there exists no natural number, such that it has such infinite
path.



