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This paper compiles a collection of geometric proofs and related construc-
tions that center around Sawayama’s Lemma and Thébault’s theorem. The doc-
ument begins with the presentation and proof of the Shooting Lemma, which
establishes a relationship between a chord in a circle, a tangent circle, and
the midpoint of the larger arc. Using this foundational lemma, the proofs of
Sawayama’s Lemma and Verrier’s Lemma follow, demonstrating the collinearity
of specific points associated with inscribed triangles and tangent circles. The
final section extends these results to prove Thébault’s theorem, generalizing the
principles of Sawayama’s and Verrier’s Lemmas to a broader context involving
two tangent circles.

1 The Shooting Lemma

Theorem 1. Consider the chord BC in the circle Ω. Let the circle ω touch
BC at a point D and the circle Ω at a point E. Prove that the line DE passes

through M , the middle of the larger arc
⌢

BC.
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Proof. The proof is quite trivial, simply consider the homothety centered at E,
which transforms ω into Ω. Then, B is mapped to B′ and C to C ′, where B′

and C ′ are the intersections of CE and BE with the tangent from M to Ω
respectevely.
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Then, ∠BCM = ∠CMC ′ due to CB ∥ C ′B′, and ∠CBM = ∠CMC ′

because C ′B′ touches Ω and finally ∠CBM = ∠BMB′. Thus, ∠CMC ′ =
∠BMB′, however due to Ω touching C ′B′ we know that ∠CEM = ∠CMC ′

and ∠BEM = ∠BMB′, consequently ∠CEM = ∠MEB. In other words ME
is the bisector of ∠CEB which means that M is the middle of the larger arc
⌢

BC.
■

In fact, due to ∠BEM = ∠DBM we conclude that (EDB) touches BM ,
consequently,

pow(EDB)M = MD ·ME = MB2 (1)

And due to M being the middle of
⌢

BC it must be that CM = MB, thus,
MB2 = MC ·MB. Combining these results we get a nice formula,

MC ·MB = MD ·ME (2)

The figure can also show a lot of interesting and fundemental properties if
one performs an inversion centered at the point M with a radius of MB = MC.
Then through this process Ω ↔ BC and because ω must continue to touch
inv(BC) and inv(Ω) (in other words Ω andBC) and it must be in the same angle
from M , it must be the case that ω → ω under the inversion. Consequently, it
must mean thatD ↔ E and thusM,D and E are colinear. Another consequence
of such argument is that the length of the tangents from M to ω are equal to
MB = MC.

Now let us consider the following, a bit stronger statement,

Theorem 2. Let A be an arbitrary point on the arc
⌢

CEB and let I be an
arbitrary point on AM . Let L be the intersection of ID and ω, prove that
AILE is cyclic.
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Proof. This is also quite a trivial statement, noticing from the previous state-
ment that CM2 = MX · AM and CM2 = MD · ME we can conclude that
MX · MA = MD · ME which by the power of the point M concludes that
AXDE is cyclic. Now, all that is left to notice is that, ∠ELD = ∠EDB due
to DB touching ω and ∠EDB = ∠EAX due to AXED being cyclic, thus
∠IAE = ∠ELD and AILE is cyclic.

■

It is a bit interesting to see the behaviour of (AILE) as one moves I along
AM . When I = X we get an already proven statement that AXDE is cyclic
and when I = A we see that (AILE) touches ED. However, there is a more
important position of I which has the following property.

Lemma 1. If MI = BM = CM , then AL tangent to ω.

Proof. This again is no less trivial than the last statement, simply notice that
MD ·ME = MC2 = MI2, thus (IDE) touches AM . Consequently,

∠IDE = ∠AIE = ∠ALE (3)

due to AILE being cyclic. Which implies that AL touches ω. ■

2 Sawayama’s and Verrier’s Lemma’s

Theorem 3. (Sawayama’s lemma) Let △ABC be inscribed into Ω and let
X be an arbitrary point AB. Consider ω which is tangent to the segment XC,
the segment XB and Ω. Let L and K be the tangency points of ω with XC and
XB respectively. Prove that L, K and I (the incenter of △ABC) are colinear.
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Proof. Now it is time to utilize all the lemmas proven in the previous section.
The first step is to extend CI till the intersection with Ω, let that intersection
point be P . Then, due to the Trillium theorem it is clear that PI = AP = PB.
This allows one to apply the last lemma to this configuration. Here C is serves
as the arbitrary point from the last lemma and due to IP = AP = PB it must
be that the intersection of IK with ω, let that point be L′, must be the tangency
point from C to ω.
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However, that tangency point is L by definition, thus L′ = L and conse-
quently L, I and K are colinear.

■

Now consider what happens when one moves X along AB, specifically let
X = A. Then, Sawayama’s lemma will transform itself into Verrier’s lemma.
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Theorem 4. (Verrier’s lemma) Let △ABC be inscribed into Ω and let ω be
a circle which is tangent to the segments BC, AB and Ω at points L, K and T
respectively. Then, L, K and I (incenter of △ABC) are colinear.
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This statement has other proofs which do not involve Sawayama’s lemma,
one of the most notable ones is the following which showcases the mechanism
at play.

Proof. Let us intersect TL and TK with Ω in points M1 and M2, by the shoot-

ing lemma it must be that M1 and M2 are the middle’s of arcs
⌢

AB and
⌢

AC.
Consequently they must lie on the lines BI and CI.
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All that is left is to apply Pascal’s theorem for M1AM2BTC and conclude
that L, I and K are colinear.

■

A beautiful lemma about the M1M2 is the following,

Lemma 2. The radical axis of (A, 0) (the circle centered at A with a radius of
zero) and ω is M1M2.
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Proof. Notice that due to the shooting lemma and its consequences, it must be
that M1A

2 = M1L ·M1T and M2A
2 = M2K ·M2T . This, means that,

pow(A,0)M1 = M2
1 = M1L ·M1T = powωM1 (4)

pow(A,0)M2 = M2
2 = M2K ·M2T = powωM2 (5)

Thus, it must be that M1 and M2 lie on the radical axis of (A, 0) and ω, in
other words M1M2 is the radical axis of (A, 0) and ω.

■

3 Thébault’s theorem

Theorem 5. (Thébault’s theorem) If △ABC is inscribed into Ω, let ω1 be
the circle tangent to the segments XB and XC and Ω and let the circle ω2 be
the circle tangent to the segments XC, AX and Ω. Let O1 and O2 be the centers
of ω1 and ω2. Then, O1, O2 and I (the incenter of △ABC) are colinear.
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Proof. Notice, due to Sawayama’s lemma it must be that LK ∩ MN = I,
where M,N are the tangency points of ω2 with AX and XC and K,L are the
tangency points of ω1 with XB and XC. With this in mind I suggest looking
at the problem from another perspective, LN is the inner tangent between ω1

and ω2 and MK is the outer tangent between ω1 and ω2. One must prove that
MN ∩ LK ∈ O1O2.
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As it turns out this statement is true for arbitrary circles ω1 and ω2.

Lemma 3. Let ω1 and ω2 be arbitrary circles prove that if LN is the inner
tangent line between them and MK is the outer, then MN ∩ LK ∈ O1O2.

This is a wonderful statement to consider on its own. Proving this statement
automatically proves Thébault’s theorem. Let us consider the homothepy center
P which transforms ω1 to ω2 (in other words the intersection of the two outer
common tangents). Let X and Y be the points of tangency of the common
tangent of ω1 and ω2. Let A and B be the intersection of NL with MK and
XY respectively. Consider the triangle △ABP , then ω1 is its incircle and ω2 is
its excircle. Then, by the Iran lemma the projection of B onto the bisector of
∠BPA must lie on both MN and LK.
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In other words, the projection of B onto the bisector of ∠APB is MN ∩LK.
However, the projection of B onto the bisector of ∠APB obviously is part of
O1O2. Thus, MN ∩ LK ∈ O1O2 and the lemma is proven, proving Thébault’s
theorem.

■
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