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Introduction

This document contains my personal notes from the courses I am

taking at Universitetet i Oslo. It also includes some additional

notes from my own independent studying, which are not directly part

of the courses.
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§1 Commutative Algebra

1.1 Ideals

Theorem 1.1 (The Fundamental Homomorphism The-

orem)

Let ϕ : A→ B be a homomorphism, then,

A/ kerϕ ∼= imϕ

Proof. Let f (α + kerϕ) = ϕ(α). Then, notice this function is well

defined, since, if I = α+kerϕ = β+kerϕ, then we must show that,

ϕ(β) = f (I) = ϕ(α)

Since α+kerϕ = β +kerϕ it must be that α+ c = β + d and since

kerϕ is an ideal it must be that α = β + γ where γ ∈ ker I . Thus,

ϕ(α) = ϕ(β + γ) = ϕ(β) + ϕ(γ) = ϕ(β)

thus ϕ(α) = ϕ(β), so the function is well-defined.

Now, all that is left is to notice that if x, y ∈ A/ kerϕ, then,

f (x) · f (y) = f (α + kerϕ) · f (β + kerϕ)

= ϕ(α) · ϕ(β) = ϕ(αβ) = f (xy)

f (x) + f (y) = ϕ(α) + ϕ(β) = ϕ(α + β) = f (x + y)
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thus f is a homomorphism, trivially it is surjective.

Let us show that f is injective, indeed if f (α + kerϕ) = f (β +

kerϕ), then it must be that,

f (α + kerϕ)− f (β + kerϕ) = f ((α− β) + kerϕ) = 0

=⇒ α− β ∈ kerϕ

Thus, α ∈ β + kerϕ, thus it must be that α + kerϕ = β + kerϕ,

since kerϕ is known to be an ideal.

Thus, since f is a homomorphism which is both surjective and

injective it must be that an isomorphism, thus proving the desired

isomorphism.

■

This theorem is quite useful since it connects two objects which

might at first glance seem unrelated.

You might of noticed sometimes people use Zn and Z/nZ inter-

changibly to represent arithmitic modulo n. Notice, if Zn is modu-

lar arithmetic mod n, then if one considers the remainder function

ϕ : Z → Zn, then its ime is Zn and the kerner is nZ, thus by the

Fundemental Homomorphism theorem it must be that,

Z/nZ ∼= Zn

This is arguably a trivial example, however at least now you know

what the two different notations mean!
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Example 1.2 Let ϕ : Z[X ] → C be a homomorphism sending

x to i, thus,

ϕ

Ñ∑
j

ajx
j

é
=
∑
j

aji
j

Then, trivially imϕ = Z[i], it is also not difficult to show that,

kerϕ = (x2 + 1)

Then, by the Fundemental Homomorphism Theorem it must be

that Z[X ]/(x2 + 1) ∼= Z[i].

As an exercise let us prove the theorem described in the example,

Lemma 1.3 kerϕ = (x2 + 1)

Proof. Assume that P (i) = 0, then it must be that P (x) = (x2 +

1)Q(x), thus part of the ideal (x2 + 1). ■

Now, another useful theorem about ideals is the following,

Theorem 1.4 Let A be a ring and I ⊆ A an ideal, then there

is an order-preserving bijection between,ß
ideals in A/I

™
↔
ß
ideals J of A such that I ⊆ J

™
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and the bijection is given by,

1. If J ⊆ A/I is an ideal, then it is sent to ϕ−1(J) ⊆ A.

2. If J ⊆ A such that I ⊆ J , then it is sent to ϕ(J).

where ϕ is the quotient homomorphism.

To mention a bit of notation, given a ring A the set of ideals

I ⊆ A is usually denoted as Spec(A).

1.2 Units and Fields

Definition 1.5 Let A be a ring, then x ∈ A is,

1. A unit if there exists y ∈ A such that,

xy = 1

2. A 0-divisor if there is y ∈ A,

xy = 0

Then,

Definition 1.6 Notice,

1. A ring A (non-zero) is a field if every 0 ̸= x ∈ A is a unit.

7
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2. A is an integral domain if A ̸= 0 and the only 0-divisor

of A is 0.

As an example in Z units are {1,−1}, thus not a field. However
Q,R,C are fields and integral domains.

Lemma 1.7 The only integral domains of the form Zn are Zp
for a prime p.

Notice,

Lemma 1.8 If x ∈ A, then, x is a unit is equivelent to (x) = A.

Proof. Indeed, since if x is a unit, then (x) trivially contains 1, thus

generates the entire ring A.

If (x) = A, then 1 ∈ (x), thus xy = 1, thus x is a unit. ■

Another thing to notice,

Lemma 1.9 A is a field is equivalent to A having exactly two

ideals (0) and (1).

Proof. If I ̸= (0) is an ideal in A, then since each element is a unit

it contains 1, thus is equal to (1). ■

Now, let us prove two important statements,
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Theorem 1.10 I is prime ⇔ A/I is an integral domain.

Proof. Let us prove the statement both ways,

1. If B = A/I is an integral domain, let ϕ be the quotient homo-

morphism. Then, if xy ∈ I , it must be that,

ϕ(xy) = 0B = ϕ(x) · ϕ(y)

thus, either ϕ(x) or ϕ(y) is 0B, which is equivelent to saying

that either x ∈ I or y ∈ I .

2. If I is prime, then let B = A/I , then suppose xy = 0B and

ϕ is the quotient homomorphism. Then, let a ∈ ϕ−1(x) and

b ∈ ϕ−1(y), then, ab ∈ I , consequently either a or b is in I

which is equivelent to either x or y being 0B.

■

Theorem 1.11 I is maximal ⇔ A/I is a field.

Proof. Notice,ß
ideals in A/I

™
↔
ß
ideals J of A such that I ⊆ J

™
thus since I is maximal it must be that A/I has only two ideals

(0) and (1), which by the previous lemmas implies that A/I is a

field. ■
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1.3 Prime/Maximal Ideals and Knull’s theo-
rem

Let us consider the following,

Theorem 1.12 Let I ⊆ J ⊆ A, then J being prime in A is

equivelent to J/I being prime in A/I .

Proof. One proof is to consider the bijection theorem described ear-

lier, however there is another approach. Notice, J being prime is

equivelent to A/J being an integral domain. Analougously J/I be-

ing prime in A/I is equivelent to showing that (A/I)/(J/I) being

an integral domain as well.

Thus, the problem is equivalent to showing that A/J being an

integral domain is the same as showing that (A/I)/(J/I) being an

integral domain.

However, I claim that,

A/J ∼= (A/I)/(J/I)

since if one considers the quotient homomorphism’s ϕ : A → A/I

and ψ : A/I → (A/I)/(J/I), then, ψ ◦ ϕ : A → (A/J)/(I/J).

Then,

kerψ ◦ ϕ = I

and ψ ◦ ϕ is surjective (not difficult to show), consequently by the

10
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fundemental homomorphism theorem it must be that,

A/I = A/(kerψ ◦ ϕ) ∼= imψ ◦ ϕ = (A/J)/(I/J)

■

Similarly one can show that J being maximal is equivelent to J/I

beeing maximal in A/I .

Notice another trivial property of prime/maximal ideals.

Lemma 1.13 Every maximal ideal is prime.

Proof. Since I ⊆ A is maximal it must be that A/I is a field which

is an integral domain which implies that I is prime. ■

There is quite a beautiful example of a maximal ideal,

Example 1.14 Let k be an arbitrary field and a⃗ = (a1, . . . , an)

be some k-tuple of size n. Then, consider the evaluation homo-

morphism,

ϕa⃗ : k[x1, . . . , xn] → k

ϕa⃗ : f 7→ f (⃗a)

Then, I claim that kerϕa⃗ ⊆ k[x1, . . . , xn] is a maximal ideal. Since

by the Fundamental Homomorphism theorem it must be that,

k[x1, . . . , xn]/ kerϕ ∼= imϕ = k

11
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Thus, since k is a field it must be that kerϕ is a maximal ideal in

k[x1, . . . , xn].

As it turns out we are actually always garanteed the existance of

a maximal ideal within a ring by Knull’s theorem.

Theorem 1.15 (Knull’s Theorem) Let A be a ring A ̸= 0,

then A has a maximal ideal.

Proof. Let S be a poset on all ideals, where I ≥ J if J ⊆ I . Then,

by Zorn’s Lemma all that one must show is that every chain has an

upper bound within S.

Let R be some chain of ideals, then consider the following ideal,

X =
⋃
i

Ri

keep it mind that in general not all unions of ideals are themselves an

ideal, however in this case it is an ideal (trivial to verify the axioms).

Now, notice that X ̸= (1), since if X = (1) then that would mean

that one of the Ri contains 1 since 1 ∈ (1), which would imply that

some Ri is the entire ring, contradiction!

Consequently, since X is greater than all the elements in R we

have established an upper bound of R for an abitrary chain R. Thus,

by Zorn’s lemma it must be that there exist maximal ideals! ■

We can use Knull’s theorem to establish another useful property

of ideals,
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Lemma 1.16 If I is an ideal of A, then I is contained within

some maximal ideal J .

Proof. Indeed, notice that by the bijection established earlier show-

ing the existance of such a J is equivelent to finding a maximal ideal

in A/I which exists by Knull’s theorem. ■

Another useful property of maximal ideals are their relationship

with units of the ring A,

Lemma 1.17 If x is a unit, then it is not contained in any

maximal ideal I of a ring A.

Proof. If x is a unit, then there exists y such that xy = 1, conse-

quently if x ∈ I then by the aximos of ideals it must be that 1 ∈ I

which implies that I = (1) = A, contradiction! ■

This leads us to an important piece of intuition that understand-

ing the properties of units in a ring A is essentialy equivelent to

understanding the properties of maximal ideals of A.

Lemma 1.18 Let A be a ring such that for every x ∈ A there

exists such a n ∈ Z such that xn = x, prove that every prime

ideal of A is maximal.

13
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Proof. Let I ⊆ A be a prime ideal, then in order to show that I is

maximal, one must show that A/I is a field. Since I is a prime ideal

we already know that A/I is an integral domain, meaning we must

show that every element has a multiplicative inverse.

Let x = α + I ∈ A/I (for some α ̸= 0) then let us chose the

minimal n such that (it exists by the problem statement),

(α + I)n = αn + I = α + I

xn − x = x(xn−1 − 1) = 0

thus since A/I is an integral domain it must be that xn−1 = 1, in

other words there exists some m that xm = 1 in A/I . Consequently

x · xm−1 = 1. Thus, since m − 1 < n it must be that xm−1 ̸= x,

thus x has a multiplicative inverse.

ConsequentlyA/I is a field and thus it must be that I is maximal.

■

1.4 Principle Ideal Domains & Unique Fac-
torization Domains

The following natural definitions appear when dealing with rings,

Definition 1.19 A ring A is,

1. a principle ideal domain if every ideal I ⊆ A is principle.

14
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2. a unique factorization domain if every non-zero, non-unit

is reducable.

Note, 0 is neither reducable or irreducable. Let us consider the fol-

lowing,

Lemma 1.20 If A is an integral domain and (f ) is prime (where

f ̸= 0), then f is irreducable.

Proof. If (f ) is prime, it must be that (f ) ̸= (1) and consequently

f is not a unit. Thus, assume that g, h are such that f = gh, then,

(f ) = (gh) =⇒ g ∈ (f ) ∨ h ∈ (f )

WLOG g ∈ (f ), then it must be that g = af . Thus,

f = gh = (af ) · h = (ah) · f

since A is an integral domain it must be that we can cancel f on both

sides and obtain ah = 1, thus implying that h is a unit, contradiction!

■

Now, how to precisely define what it means for two factorizations

to be equivelent. For example it would be nice to consider 2 · 3 =

(−2)·(−3) as the same factorization of 6, thus the following definition

is natural,
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Definition 1.21 Two factorizations are equivelent,

a =
∏
i

pi =
∏
i

qi

if there is some bijection between p and q such that,

pi = uiqi

where ui is a unit.

Example 1.22 Due to the fundamental theorem of arithmetic

it must be that Z is a UFD (unique factorization domain).

Consider Z[i
√
5] it is not a UFD since,

6 = (1 + i
√
5)(1− i

√
5) = 2 · 3

Now, notice,

Lemma 1.23 If A is a UFD and f ∈ A is irreducable, then (f )

is prime.

Proof. Indeed, notice that f being irreducable implies that f is a

non-unit, thus (f ) ̸= (1).

Let gh ∈ (f ), then it must be that gh = af for some a ∈ A.

Notice, since f is irreducable it must be that in the factorization of

g or h the element f is contained (possibly multiplied by some unit).

16
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WLOG g contains f in its factorization.

Then, g ∈ (f ), which implies that (f ) is prime. ■

Here are two extremely useful results,

Theorem 1.24 Every PID is a UFD

Theorem 1.25 (Gauss) If A is a UFD, then A[x] is a UFD as

well.

This leads us to the following ”chain” of inferences,

field =⇒ PID =⇒ UFD =⇒ Integral Domain

Now,

Lemma 1.26 A ring A is called local if it has exactly one max-

imal ideal.

Example 1.27 Every field is local, Z is not local.

The ring Z/piZ is local. (a very nice example to keep in mind)

Now,

Lemma 1.28 Let A be a local ring with a maximal ideal M ⊂
A, then the units of A are A \M .

A is local ⇐= the set of non-unit is ideal.

17
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Proof. The first point is a consequence of a lemma discussed earlier.

To prove the second statement, assume that A is a ring such that,

M = {f ∈ A|f is not a unit}

is an ideal. Then,

M is a unique maximal ideal

⇔ every ideal I ̸= (1) is such that I ⊆M

Let x ∈ I , then (x) ⊆ I ⊆ (1) since this holds for all x ∈ I it must

be that I ⊆ m. ■

Example 1.29 Consider,

R(x) =
ß
f

g
|f, g ∈ R[x], g ̸= 0

™
Then a subring

R[x](x) =
ß
f

g
|f, g ∈ R[x] and g ̸∈ (x)

™
Then, it turns out that R[x](x) is local (basically the set of rational
functions defined near zero).

18
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1.5 The Chinese Remainder Theorem

A known result in number theory is that if (n,m) = 1, then ax +

by can equal any integer. This allows us to define relatively prime

elements in a commutative ring,

Definition 1.30 Ideals I and J are relatively prime if I + J =

(1).

Example 1.31 In Q[x] we can consider the principle ideals (x−
2) and (2x2 − 2), then,

(x− 2) + (2x2 − 2) = (x− 2, 2x2 − 2)

= (x− 2, 2x2 − 2− 2x2 + 2x) = (x− 2, 6) = (1)

thus proving that (x− 2) is relatively prime to (2x2 − 2).

Notice, if we consider Z, then if we have some relatively prime ideals

(2) and (3), then (2)·(3) = (6) which is just (2)∩(3), this leads one to
question whether this is always true. It turns out it is,

Lemma 1.32 If I, J ⊆ A are relatively prime, then I ·J = I∩J .

19
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Proof. One direction is trivial,

I · J =

∑
i,j

aibj

 ⊆ I ∩ J

the other direction is no harder, assume that c ∈ I ∩ J , then since

I and J are relatively prime it must be that there exist some a + b

such that a + b = 1 where a ∈ I and b ∈ J .

c = 1 · c = (a + b) · c = ac + bc ∈ I · J

■

Let A1, . . . , An be rings, then there is a natural definition of a

product of these rings defined as,∏
Ai = {(a1, . . . , an) | ai ∈ Ai}

which is trivially a ring, where the operations are component-wise.

Notice, we also have natural projection homomorphisms,

ϕi :
∏
i

Ai → Aj

where ϕi((a1, . . . , an)) = ai. Another way to construct homomor-

phisms with ring products is to assume the existance of a homomor-

phism ψi : B → Ai, then we can a product homomorphism defined

as following, ∏
ψi : B →

∏
Ai

20
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where b ∈ B is sent to (ψ1(b), . . . , ψn(b)).

Now, we are ready to formulate the Generalized Chinese Remain-

der Theorem (sometimes written as CRT)

Theorem 1.33 (The Chinese Remainder Theorem)

Let I1, . . . , In ⊆ A be ideals such that any two are coprime.

Then,

A/
∏
i

Ii ∼=
∏

A/Ii

Example 1.34 Consider the two coprime ideals (x − 2) and

(x2 − 2) in Q[x]. Then,

Q[x]/(x− 2)(x2 − 2) ∼= Q[x]/(x− 2)×Q[x]/(x2 − 2)

∼= Q×Q(
√
2)

where the last step can be done due to the fundamental homo-

morphism theorem.

Another useful notion is the following,

Definition 1.35 If I, J ⊆ A are two ideals, then,

(I : J) = {a ∈ A | aJ ⊆ I}

then,

21
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Definition 1.36 Let J ⊆ A be an indeal, then the annihlator

of J is,

Ann(J) = ((0) : J) = {a ∈ A | b ∈ J : ab = 0}

similarly we can define the annihlator of an element x ∈ A,

Ann(x) = Ann((x))

1.6 Extension & Contraction of ideals

Definition 1.37 Let I ⊆ A be an ideal of A, then the radical

of I is defined as,
√
I = {f ∈ A | ∃n ∈ Z : fn ∈ I}

For example in Z the radical of n simply looks at the prime factoriza-

tion of n and turns all the exponents into 1 coinciding the standard

definition of a radical in number theory.

Similarly, notice that
√

(0) are simply all elements such that

xn = 0 for some n, i.e. the nilpotents of A.

Lemma 1.38 Let I ⊆ A be an ideal, then
√
I is an ideal.

Also, similarly to the formula charecterizing the set of nilpotents, the

following theorem holds,
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Theorem 1.39 If I ⊆ A is an ideal, then,
√
I =

⋂
P⊂A

P prime, I⊆P

P

To prove this theorem we will first prove the following lemma,

Lemma 1.40 If I ⊆ A is an ideal, let ϕ be the quotient homo-

morphism, let N ⊆ A/I be the nilradical, then,
√
I = ϕ−1(N)

Proof. Notice, p ∈
√
I is equivelent to fn ∈ I which is equivelent

to ϕ(fn) = 0. Due to properties of homomorphisms it must be that,

ϕ(fn) = ϕ(f )n = 0

thus it must be that ϕ(f ) is nilpotent in A/I , thus is in N . ■

Using this lemma we can prove for example that
√
I is an ideal, since√

I is the preimage of an ideal which is an ideal. We can also use

this lemma to prove the theorem giving a description of the radical.

Notice,

ϕ−1(N) = ϕ−1

Ü ⋂
P⊂A/I
P prime

P

ê
=

⋂
P⊆A/I
P prime

ϕ−1(P ) =
⋂
Q∈A,

Q prime,
I⊆Q

Q

23
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which proves the theorem (assuming that the nilradical theorem is

proven which will be proven later on).

As mentioned before, while preimages behave nicely with ideals,

the same is not true for images, this naturally leads us to the following

definition,

Definition 1.41 Let ϕ : A→ B be a ring homomorphism, then

let I ⊆ A, J ⊆ B, then,

• The contraction of J along ϕ is ϕ−1(J)

• The extension of I along ϕ, denoted as ϕ(I)B (or IB

if ϕ is clear from the context) is the smallest ideal of B

containing ϕ(I).

Notice,

Lemma 1.42 If P ⊂ B is a prime ideal, then the contraction

of P is also prime in A.

Proof. Indeed, assume that xy ∈ ϕ−1(P ), then,

ϕ(x) · ϕ(y) = ϕ(xy) ∈ ϕ(ϕ−1(P )) = P

which implies that either ϕ(x) ∈ P or ϕ(y) ∈ P since P is prime.

However, this means that either x or y is in ϕ−1(P ) which proves

that ϕ−1(P ) is prime in A. ■
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1.7 Modules & Free Modules and Quotient
Modules

Definition 1.43 Let A be a ring, a module over A is a set M

equiped with an operation + :M×M →M and a multiplication

operation · : A×M →M such that,

1. (M,+) is an Abelean group

2. 1Am = m

3. For any a, b ∈ A and m ∈ M it must be that (a + b)m =

am + bm

4. For any a ∈ A and n,m ∈ M it must be that a(n +m) =

an + am

5. a(bm) = (ab)m

As several examples, if A is a vector space, then modules over A

is the same thing as a A vector space. Another beautiful thing is

that any Abelian group is actually simply a Z-module, since we can

define the multiplication by an integer as repeated addition.

Notice, for Z-modules group homomorphisms and module homo-

morphisms are the same thing!

Another important concept is direct summation,

25
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Definition 1.44 Let M,N be A-modules, then,

N ⊕M =M ×N

in fact for any finite number of A-modules, {Mi} the direct sum of

the modules is the same as the product of modules. However, when

considering an infinite direct sum, a restriction on an element is

added, that there is only a finite non-zero number of components.

Just as in vector spaces, a natural thing to do is to consider basis

of modules. Trivially, some basis exists, since we can just consider

all the elements, however what about uniqueness of expressability of

each element in the module? Notice, the sums must be finite when

spanning the module.

Let N be a A-module. Let the basis be E, then consider the

homomorphism ϕ : A⊕E → N .

Notice, if f is not uniquely expressed as a linear combination

of the basis elements, then we can consider the difference of the

two linear combinations and thus obtain multiple representations of

0. Thus, in order for f to have the nice property of unique linear

combinations it must be that kerϕ = 0, in other words that ϕ is an

isomorphism. Thus, that N ∼= A⊕E. This motivates the following

definition,

26
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Definition 1.45 Let N be an A-module. Then N is free if

N ∼= A⊕Λ.

Notice, if A is some commutative ring, then any ideal I ⊆ A

is actually an A-module! Since we can consider quotient rings, this

motivates one to consider quotient modules.

Definition 1.46 Let N ⊆M be a submodule, then,

M/N = {m +N | m ∈M}

where the operations are defined canonically.

1.8 Module Isomorphism Theorems & Pre-
sentations of Modules

Just as in group theory there are fundamental isomorphism theorems

there are module isomorphism theorems!

Theorem 1.47 (Module Isomorphism Theorems)

1. Let ϕ :M → N , then

imϕ ∼= M/ kerϕ

27
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2. Given M1 ⊆M2 ⊆M3, then we have,

M3/M2
∼= (M3/M1)/(M2/M1)

3. Given submodules M,N ⊆ P we have,

(N +M)/M ∼= N/(M ∩N)

Proof. I will only prove the third statement to showcase the power

of the first statement. Consider the homomorphism ϕ : N → (N +

M)/M where ϕ(n) = n+M , then ϕ is surjective and kerϕ =M∩N ,

thus it must be that (N +M)/M ∼= N/(M ∩N). ■

If M is free, then M ∼= A⊕Λ, then if Λ is finite, then the rank of

M is simply the cardinality of Λ.

Lemma 1.48 Let M be an A-module. Then there exists some

free module F and a surjective homomorphism ϕ : F →M .

Proof. Indeed, considerA⊕M , along with ϕ such that ϕ((am)m∈M) =∑
m∈M amm ∈ M , then trivially ϕ is surjective, since for any x ∈

A⊕M we can consider ex = (0, 0, . . . , 1, . . . , 0) where 1 is for the x

element. ■

This lemma allows us to make the following definition,
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Definition 1.49 Let M be an A-module, then the presenta-

tion ofM are free modules F ′ and F along with a homomorphism

ϕ : F ′ → F where M ∼= cokϕ.

Notice,

Theorem 1.50 Any module has a presentation.

Proof. Indeed, by the lemma proven earlier it must be that there ex-

ists some surjective homomorphism ϕ : F →M and some surjective

homomorphism ψ : F ′ → kerϕ (since kerϕ is also a module). Thus,

ψ : F ′ → kerϕ ⊆ F
ϕ→M

then,

cokψ = F/ imψ = F/ kerϕ ∼= imϕ =M

which proves the existance of the desired presentation. ■

This means that a presentation can equivelently be defined as a set

(G,R, ϕ, ψ) where G and R are some sets and ϕ : A⊕R → A⊕G and

ψ : A⊕G → M are homomorphisms such that ψ is surjective and

imϕ = kerψ. In other words a presentation of M is,

F ′ ϕ→ F →M → 0

Due to the rather complex definition of a presentation of a

module it is rather useful to think of it as some generators and re-

lations. Indeed, since F is free we can consider its basis, then the
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surjection F → M says that this basis generates M . Notice, the

kernel of F → M consists of all linear combinations of the gener-

ators that vanish in M , these represent the relations between the

generators.

This leads us to a rather intuitive understanding of a presentation

to be simply a generalized notion of a basis for modules.
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§2 Galois Theory

An import concept related to fields is,

Definition 2.1 K is a field extension of F if K ⊆ F , where

K and F are fields, usually denoted as K/F .

A natural concept to consider from here is,

Definition 2.2 An algebraic closure of a field F is the minimal

field extension K of F such that for all P (X) ∈ F [X ] the roots

of P lie in K.

As an example the algebraic closure of Q are algebraic numbers

and the algebraic closure of R is C.
Let embedding be an injective field homomorphism f : K ↪→ C

which fixes Q. Then,

Lemma 2.3 Under an embedding an element gets sent to one

of its Galois conjugates.

Proof. Let us consider the minimal polynomial over Q, then,

a1 + a2α + . . . + anα
n = 0

Then, applying an embedding f to both sides we obtain,

f (a1) + f (a2)f (α) + . . . + f (an)f (α)
n = f (0)
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a1 + a2f (α) + . . . + anf (α)
n = 0

Thus, f (α) is a root of the minimal polynomial, thus one of the

Galois conjugates of α by definition. ■

This lemma actually tells us a lot about the behaviour of em-

beddings. Consider Q(
√
2), since the minimal polynomial of

√
2 is

x2 − 2 = 0 which contains two roots, thus a embedding can send√
2 only to one of those two roots, then the rest of the function is

determined. Consequently there are only 2 embeddings of Q(
√
2).

In general the same logic can be applied to derive that the number

of embeddings f : Q(α) ↪→ C is simply the algebraic degree of α.

Actually a more general theorem holds,

Theorem 2.4 The number of embeddings f : K ↪→ C is pre-

cisely the degree of field K/Q.

Proof. Let K = Q(a1, . . . , an). Then, the number of embeddings

f : Q(a1, . . . , ak) ↪→ C is simply,

[Q(a1, . . . , ak) : Q(a1, . . . , ak−1)] . . . [Q(a1, a2) : Q(a1)]·[Q(a1) : Q]

= [Q(a1, . . . , ak) : Q] = [K : Q]

which proves the desired result. ■

The logic here is quite general, thus it can be generalized further

to abritrary algebraic closures, all that is required is that a polyno-

mial being irreducable implies that it doesn’t have double roots (this
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is allowed since we are working in an algebraic closure). A more

general theorem holds, the proof is trivially the same,

Theorem 2.5 Let K/F be an a field extension and let G be

an algebraic closure of F , then there exist [K : F ] embeddings

σ : K → G that fix F .

Now, given a field extension K/F we can consider the group of

automorphisms from K/F to itself. Then,

Lemma 2.6 |Aut(K/F )| divides [K : F ]

Proof. TODO (Consequence of Lagrange) ■

Notice, that we can determine |Aut(K/F )| givenK = F (α1, . . . , αn),

since α has to go to its Galois conjugates, however since it is an au-

tomorphism those roots must go to the roots which are in K. To

provide several examples,

1. |Aut(Q(
√
2)/Q)| = 2, since the Galois conjugates of

√
2 are

−
√
2 and

√
2 both of which lie in Q(

√
2). Thus it is also true

that Aut(Q(
√
2)/Q) ∼= Z/2Z.

2. |Aut(Q( 3
√
2)/Q)| = 1, since the Galois conjugates of 3

√
2 are

complex, the only one in Q( 3
√
2) being 3

√
2, thus there is only

one automorphism, and it is the identity function.

Notice,
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Theorem 2.7 LetK/F be a finite seperable field extension and

letK/F = F (α1, . . . , ah). Then, let µ(α) be the number of Galois

conjugates of α present in K/F . Then,

|Aut(K/F )| ≤
h∏
i=1

µ(αi)

Proof. Since each of the generators may be sent to one of the µ(αi)

elements, we obtain the desired result. (notice inequality is important

since not any configurtion gives rise to a valid automorphism) ■

However, it turns out that due to Artin’s primitive element

theorem that all finite seperable field extensions have the minimal

generator set of size 1, i.e. K/F = F (α) for some α ∈ K, thus

reducing the above theorem to just one factor.

Now, this discussion naturally leads to the following definition,

Definition 2.8 A finite field extension K/F is a Galois field

extension if and only if,

|Aut(K/F )| = [K : F ]

Notice, if K/F = F (α1, . . . , αn), then,

|Aut(K/F )| = [F (a1, . . . , ak) : F (a1, . . . , ak−1)] · . . . · [F (a1) : F ]
= [K : F ]
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the only condition required for this proof to work is that K/F is

normal (i.e. given any irreducable polynomial p ∈ F [X ] with at

least one root in K/F it splits completely in K/F ) and seperable,

thus we obtain the following,

Theorem 2.9 If a field extension is seperable and normal, then

it is a Galois field extension.

obviously the definitions are now equivelent. However, it turns out

there is another way to define a Galois extension, an equivelent for-

mulation,

Theorem 2.10 A field extension K/F is Galois if and only if

it is a splitting field of some separable polynomial p ∈ F [X ].

The proof for whyK/F = SplF (p) impliesK/F is Galois is the exact

same the one one provided above, since the minimal polynomials of

ai all split since p splits. The other direction is a bit trickier, thus I

will not provide the proof of this statement.

When a field extension K/F is Galois, the group of automor-

phisms on it is denoted as Gal(K/F ) and called the Galois group of

K/F .

Similarly one can define a Galois closure of K/F which is the

minimal field extension L/K such that L/F is a Galois field ex-

tension, where minimality means any other field extension satisfying

this property contains L.
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It turns out constructing Galois closure’s isn’t that difficult, in

fact,

Theorem 2.11 Suppose K = F (α1, . . . , αn), then the Galois

closure L is,

L = SplF (m1, . . . ,mn)

where mi is the minimal polynomial of αi.

Proof. Notice, triviallyK ⊆ L since (α1, . . . , αn) all must be present

in L since the minimal polynomials contain αi as roots.

Notice, L/F is a seperable and normal field extension, thus a

Galois field extension.

It is minimal, since the Galois closure must be seperable and

normal it must be the roots of the minimal polynomials of αi are

present in the Galois closure, thus we obtain that any Galois closure

must contain L.

Consequently, we obtain the the Galois closure of K/F is simply

the splitting field of the minimal polynomials of the generators of

K/F . ■
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