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§1 IMO

Problem 1.1 (IMO 2019 P1)

Find all f : Z→ Z such that,

f(2x) + 2f(y) = f(f(x+ y))

Proof. Let P (x, y) the condition generated by x, y. Then,®
P (x, 0) : f(2x) + 2f(0) = f(f(x))

P (0, x) : f(0) + 2f(x) = f(f(x))

Combining these two we obtain that,

f(2x) = 2f(x)− f(0)

Now let us consider the following,

P (x, 1) : f(2x) + 2f(1) = f(f(x+ 1))

However from the previous observations we can say that,

f(f(x+ 1)) = 2f(x+ 1) + f(0)

Thus,
2f(x) + 2f(1)− f(0) = 2f(x+ 1) + f(0)

f(x+ 1) = f(x) + f(1)− f(0)

Thus, we see that f(x) = f(0) + x · C where C is some constant (specifically
f(1)− f(0)) for all x ∈ Z. Now let us consider,

P (x,−x) : f(2x) + 2f(−x) = f(f(0))

We can rewrite this as,

f(0) + 2xC + 2f(0)− 2xC = f(0) + f(0) · C

=⇒ 2f(0) = f(0) · C
This implies that either f(0) = 0 or C = 2. Let us consider both cases,

• If f(0) = 0, then, f(x) = cx and it is simple to verify that then f(x) must
equal 2x or 0.

• If C = 2, then,

f(0) + 4x+ 2(f(0) + 2y) = f(f(0) + 2(x+ y)) = f(0) + 2f(0) + 4(x+ y)

4x+ 2f(0) + 4y = 2f(0) + 4x+ 4y

Thus, we see the only solutions to this functional equation are f(x) = 2x + c
and f(x) = 0.
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Problem 1.2 (IMO 2022 P2)

Find all f : R+ → R+ such that for each x ∈ R+ there exists exactly
one y ∈ R+ such that,

xf(y) + yf(x) ≤ 2

Proof. Obviously f(x) = 1
x works (from AM-GM).

Let us say that x ∼ y if and only if the condition from the problem statement
is true. Then obviously this is commutative, meaning that if x ∼ y then y ∼ x.

Lemma 1.1 If f(x) ≤ 1
x , then, x ∼ x.

This is simple to see due to,

2xf(x) ≤ 2x · 1
x
= 2

However, notice that if x ∼ y, then,

xf(y) + yf(x) ≤ 2

and in it must be that f(x) > 1
x and f(y) > 1

y which would imply that by
AM-GM,

xf(y) + yf(x) =
x

y
+

y

x
≥ 2

Thus we obtain that for all x ∈ R+ it must be that x ∼ x. Thus that,

f(x) ≤ 1

x

for all x ∈ R+.
Notice that if f(a) < 1

a , then, if,

f(a) =
1

a
− ϵ

then,

xf(a) + af(x) = x

Å
1

a
− ϵ

ã
+ af(x) ≤ x

Å
1

a
− ϵ

ã
+

a

x

?
≤ 2

However the last inequality for ϵ > 0 has multiple solutions for x. Because,

x2

Å
1

a
− ϵ

ã
+ a− 2x ≤ 0

The only way for this inequality to have a single solution for x ∈ R+ is if the
equality has only one solution, thus the discriminant is zero,

∆ = 4− 4 · a ·
Å
1

a
− ϵ

ã
2
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which is obviously never 0 for ϵ > 0. Thus because for each x there is only one
such y that x ∼ y it must mean that,

f(x) =
1

x

for all x ∈ R+.
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Problem 1.3 (IMO 2014 P4)

Let P and Q be on segment BC of an acute triangle △ABC such that
∠PAB = ∠BCA and ∠CAQ = ∠ABC. Let M and N be the points on
AP and AQ, respectively, such that P is the midpoint of AM and Q is
the midpoint of AN . Prove that the intersection of BM and CN is on the
circumference of triangle △ABC.

Proof. Let △ABC be the reference triangle in barycentric coordinates.

B

A

C
PQ

N M

X

Then we can calculate the point P , because △ABP ∼ △CBA and △ACQ ∼
△BCA. Thus,

BA

BC
=

BP

BA

=⇒ BP =
BA2

BC
=

c2

a

consequently, P =
Ä
0 : a− c2

a : c2

a

ä
, analogously we get, Q =

Ä
0 : b2

a : a− b2

a

ä
.

Now we can calculate points M and N ,

M =
(
−a2 : 2a2 − 2c2 : 2c2

)
N =

(
−a2 : 2b2 : 2a2 − 2b2

)
Now we simply need to intersect BM and CN which is not hard to do consider-
ing that both are cevians in the triangle. It is not hard to see that the following
point satisfies these conditions,

X =
(
−a2 : 2b2 : 2c2

)
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Now we just need to check that this point lies on the circumcircle of △ABC
which is given by,

a2yz + b2xz + c2xy = 0

Thus,
a2yz + b2xz + c2xy = 4a2b2c2 − 2a2b2c2 − 2a2b2c2 = 0

Consequently, it must be that X ∈ (△ABC).
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Problem 1.4 (IMO 2022 Shortlist, G2)

In the acute-angled triangle △ABC, the point F is the foot of the altitude
from A, and P is a point on the segment AF . The lines through P parallel
to AC and AB meet BC at D and E, respectively. Points X ̸= A and
Y ̸= A lie on the circles ABD and ACE, respectively, such that DA = DX
and EA = EY . Prove that B,C,X and Y are concyclic.

Proof. There are a lot of observations that can be done in this problem, however
this is the solution I have.

B

A

C
H

P

E D
FX

Y

W
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Lemma 1.2 The second intersection of (ABD) and (AEC) lies on AH.

This is true due to basic angle chase, assume that F lies on AH and (ABD),
let us prove that then AECF is cyclic. By Power of the Point,

HA ·HF = HD ·HD = HE ·HC

the last is obviously true because PE ∥ AB and PD ∥ AC. Now let us in-
tersect BX with AF at a point W , then the condition that BXCY is cyclic
by the radical center theorem is equivelent to showing that W,C and Y are
colinear.

Lemma 1.3 BC is the angle bisector of ∠ABW

This is because,

∠CBW = ∠XAD = ∠AXD = ∠ABC

because F is the midpoint of the arc between A and X per definition. Thus, W
is the reflection of A over H. The exact same argument for C shows that BC
is the angle bisector of ∠Y CA and thus, CY must intersect AF at W .
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Problem 1.5 (IMO 2012 P1)

Given triangle ABC the point J is the center of the excircle opposite the
vertex A. This excircle is tangent to side BC at M , and to lines AB and
AC at K and L, respectively. Lines LM and BJ meet at F , and lines KM
and CJ meet at G. Let S be the point of intersection of lines AF and BC,
and let T be the point of intersection of lines AG and BC. Prove that M
is the midpoint of ST .

Proof. Pascal’s theorem hints us towards checking whether FAGKJL is cyclic.

B

A

C

J

K

L

M

F G

S T

Notice, that because KM ⊥ FJ and JG ⊥ ML, it must be that M is the
orthocenter of FGJ . Thus, FG ∥ BC, consequently,

∠GFJ = ∠BCJ = ∠MKJ

Thus, FKJG is cyclic, analogously we conclude that FKJLG is cyclic and by
Pascal’s theorem it must be that A lies on this circle as well, thus FAGLJK is
cyclic.
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Now notice,
∠FGA = ∠ALF = ∠CML = ∠GFL

the last step comes from FG ∥ BC. Thus, AT ∥ FM , the same for AG ∥ FM .
Consequently, AGMF is a parallelogram. Because of that it must be that FG
is the midline of △AST and M is the midpoint of the side ST .
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Problem 1.6 (IMO 2022 Shortlist C1)

A ±1-sequence is a sequence of 2022 numbers a1, . . . , a2022, each equal to
either +1 or −1. Determine the largest C such that, for any ±1-sequence,
there exists an integer k and indices 1 ≤ t1 ≤ . . . ≤ tk ≤ 2022 so that
ti+1 − ti ≤ 2 for all i, and ∣∣∣∣∣

k∑
i=1

ati

∣∣∣∣∣ ≥ C

Proof. WLOG, let there be more 1 than −1 in the ±1-sequence. Then, let us
consider the following algorithm,

Algorithm 1.4 If the next element is −1, then skip to the next one and
include it. If the next element is 1, then include it. Continue this process
until you have went through the entire sequence.

This algorithm will garantee that we skip at least ⌈X2 ⌉, where X is the number
of −1 in the sequence. Thus,∣∣∣∣∣

k∑
i=1

ati

∣∣∣∣∣ ≥ (2022−X)−
õ
X

2

û
≥ (2022− 1011)−

õ
1011

2

û
= 506

Consequently, it must be that C ≥ 506. Now consider the following sequence,

1, 1,−1,−1, 1, 1, . . . ,−1,−1, 1,−1

It alternates between 1, 1 and −1,−1 until the very end, where it is 1 and −1.
Notice that in each consequtive pair of identical numbers at least one of the

numbers is present in our sequence. Thus, no matter our choice of indices, the
total sum is bounded by,∣∣∣∣∣

k∑
i=1

ati

∣∣∣∣∣ ≤ 2 · 1010
2
− 1010

2
+ 1 = 2 · 505− 505 + 1 = 506

Thus, it must be that C = 506.
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Problem 1.7 (IMO 2022 P4)

Let ABCDE be a convex pentagon such that BC = DE. Assume that
there is a point T inside ABCDE with TB = TD, TC = TE and ∠ABT =
∠TEA. Let line AB intersect lines CD and CT at points P and Q, respec-
tively. Assume that the points P,B,A,Q occur on their line in that order.
Let line AE intersect lines CD and DT at points R and S, respectively.
Assume that the points R,E,A, S occur on their line in that order. Prove
that the points P, S,Q,R lie on a circle.

Proof. The first thing which one can notice is that △TDE ∼ △TBC.

T

E

D

B

C

A

P

R

S

Q

Now, notice that,

Lemma 1.5 △STE ∼ △QTB and SQCD is cyclic.

This is because,

∠STE = 180− ∠DTE = 180− ∠BTC = ∠QTB
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Thus,
TS

TC
=

TS

TE
=

TQ

TB
=

TQ

TD

=⇒ TS · TD = TC · TQ

Consequently SQCD is cyclic. Now,

∠QSR = ∠QSD − ∠RSD = ∠QCD − ∠PQC = ∠QPR

which proves that SQPR is cyclic.
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Problem 1.8 (IMO 2012 P4)

Find all functions f : Z → Z such that, for all integers a, b, c such that
a+ b+ c = 0, the following equality holds,

f2(a) + f2(b) + f2(c) = 2f(a)f(b) + 2f(b)f(c) + 2f(a)f(c)

Proof. Obviously from a = b = c = 0 we obtain that f(0) = 0.
Notice, if we set into the original functional equation b = −a and c = 0, we

will obtain,
f2(a) + f2(−a) = 2f(a)f(−a)

=⇒ (f(a)− f(−a))2 = 0

=⇒ f(a) = f(−a)

Now, notice that a very common transformation with this type of equation is,

x2 + y2 + z2 = 2xy + 2yz + 2xz

(x+ y − z)2 = x2 + y2 + z2 + 2xy − 2xz − 2xy

=⇒ 4xy = (x+ y − z)2

=⇒ xy =
(x+ y − z

2

)2

Thus,

f(a)f(b) =

Å
f(a) + f(b)− f(c)

2

ã2
Now is the perfect time to get rid of the third variable, let c = −a − b and we
will obtain, (because f(−a− b) = f(a+ b))

f(a)f(b) =

Å
f(a) + f(b)− f(a+ b)

2

ã2
f(a+ b) = f(a) + f(b)± 2

»
f(a)f(b)

The nice thing about this is first of all, because f(a)f(b) is always nonnegative
it must be that f is either always ≥ 0 or ≤ 0. The second thing is that now
we obtained an equation equivelent to the original functional equation and we
can assume that f is positive (because if f is a solution, then −f is a solution
as well). However, we can still do some preliminary steps for example obviously
we want to rewrite the equation as,

f(a+ b) = (
»

f(a)±
»
f(b))2

=⇒
»
f(a+ b) = ±

»
f(a)±

»
f(b)

13
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thus if g(x) =
√

f(x), then we know that,

g(x+ y) = ±g(x)± g(y)

Now, if g(1) = c, then,

g(2) = ±g(1)± g(1) = c± c = 2c ∨ 0

Now, let us consider two cases,

Case 1) If g(2) = 2c, then,

g(3) = ±f(1)± f(2) = ±c± 2c = 3c ∨ c

because f is ≥ 0. Now, we again consider two cases, right now let g(3) = 3c.
Then, ®

g(4) = ±g(2)± g(2) = 4c ∨ 0

g(4) = ±g(1)± g(3) = 4c ∨ 2c

=⇒ g(4) = 4c

inductively it is simple to continue this logic and show that g(n) = nc. Thus,
one of the solutions for f is f(n) = cn2.

Case 2) If g(2) = 2c and g(3) = c. Then,®
g(4) = ±g(1)± g(3) = 0 ∨ 2c

g(4) = ±g(2)± g(2) = ±2c± 2c = 0 ∨ 4c

=⇒ g(4) = 0

However, if you repeat this argument for higher value of g(n) you will obtain a
periodic function of the following form,

g(n) =


c, if n ≡ 1 (mod 2)

2c, if n ≡ 2 (mod 4)

0, if n ≡ 0 (mod 4)

which is equivelent to,

f(n) =


c, if n ≡ 1 (mod 2)

4c, if n ≡ 2 (mod 4)

0, if n ≡ 0 (mod 4)

Case 3) If g(2) = 0, then,
g(3) = ±g(1)± g(2) = c

g(4) = ±g(2)± g(2) = 0

. . .
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Thus,

g(n) =

®
0, if n ≡ 0 (mod 2)

c, if n ≡ 0 (mod 2)

=⇒ f(n) =

®
0, if n ≡ 0 (mod 2)

c, if n ≡ 0 (mod 2)

Thus, we have obtained all solutions (all the solutions above have there
negative counterparts as well).
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Problem 1.9 (IMO 2013 P2)

A configuration of 4027 points in the plane is called Colombian if it con-
sists of 2013 red points and 2014 blue points, and no three of the points
of the configuration are collinear. By drawing some lines, the plane is di-
vided into several regions. An arrangement of lines is good for a Colombian
configuration if the following two conditions are satisfied:

1. No line passes through any point of the configuration.

2. No region contains points of both colors.

Find the least value of k such that for any Colombian configuration of 4027
points, there is a good arrangement of k lines.

Proof. Let us consider the following construction (alternating the colors), I claim
one needs at least 2013 lines.

To prove this simply consider all the segments connecting neighboring blue/red
points, then each of those segments must be split by some line (else they wouldn’t
be in different regions), but each line cuts no more than 2 such segments. How-
ever, there is a total of 2 · 2013 such segments, thus a minimum of 2013 lines is
required.

Now, we need to prove that 2013 lines is always enough.

Lemma 1.6 Given n points blue and k < n red points, where k is even,
then it is possible to satisfy the conditions in the problem statement using
k lines.

Consider two red points, then no blue point lies on the line between them. Thus,
we can consider two close enough lines parallel to the line between the two red
points and divide the plane into three parts with one of the parts containing
both of the red points and no other point. Thus, if we repeat this argument for

16
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the k
2 pairs of red points we will obtain a construction satisfying the conditions

of the problem statement involving only 2 · k2 = k lines.

Lemma 1.7 Given n points of one color and n− 1 points of another color,
a minimum of n−1 lines is required to satisfy the conditions in the problem
statement.

If n− 1 is even, then we are done, thus let us assume that n− 1 is odd.
Let us construct a convex hull given all the points. If it contains two neigh-

boring blue points, then we separate them from the rest of the points using
one line and then apply the induction hypothesis on the rest of the points and
obtain 1 + n− 2 = n− 1 lines.

If at least one red point is present in the convex hull we can separate it from
the rest of the points using one line. Then, we have n− 2 red points left, which
is an even number, thus we can satisfy the conditions of the problem statement
using 1 + n− 2 = n− 1 lines.

Obviously the problem follows when n = 2014.

17
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Problem 1.10 (IMO Shortlist 2022 N2)

Find all positive integers n > 2 such that,

n! |
∏

p<q≤n

(p+ q)

Proof. Let r be the biggest prime ≤ n. Then, obviously vr(n!) = 1. However,

vp

Ñ ∏
p<q≤n

(p+ q)

é
=

∑
p+q=r

1

because p+q < r+r = 2r. Thus, there must be exactly one solution to p+q = r
for prime p, q. However, because r is an odd prime it must be that either p or
q is even, i.e. 2. WLOG q = r − 2.

Notice, that it can’t be that p, p+2 and p+4 are all prime, except for 3, 5, 7.
Let us use the exact same logic for q, assuming that q > 5, which is true for

n ≥ 11. Notice, that,

x+ y < p+ p− 4 = 2(q − 2)

where x, y are prime (due to the above). However, notice that it also can’t be
that x+ y = q where x, y are prime, also due to the argument before. Thus,

vq

Ñ ∏
x<y≤n

(x+ y)

é
= 0 < vq(n!)

contradiction! Thus, 7 ≤ n < 11,

Case 1) If n = 7, (primes are 2, 3, 5, 7)∏
p<q≤n

(p+ q) = (2 + 3) · (3 + 5) · (5 + 7) · (2 + 5) · (2 + 7) · (3 + 7)

= 5 · 8 · 12 · 7 · 9 · 10 (1)

which is obviously divisible by 7!.

Case 2) However, already for n > 7, there isn’t enough factors in the product
(because no new primes appear up until 11).

Thus, the only n satisfying the problem statement is 7.
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Problem 1.11 (IMO Shortlist 2022 G3)

Let ABCD be a cyclic quadrilateral. Assume that the points Q,A,B, P
are collinear in this order, in such a way that the line AC is tangent to the
circle ADQ, and the line BD is tangent to the circle BCP . Let M and
N be the midpoints of segments BC and AD, respectively. Prove that the
following three lines are concurrent: line CD, the tangent of circle ANQ at
point A, and the tangent to circle BMP at point B.

A

B

C

D

Q

P

N

M X

G

Proof. Notice that,
∡QDA = ∡CAB = ∡BDC

and,
∡QAD = ∡BCD

Thus, △ADQ ∼ △CDB, and D is the center of the spiral similarity between
the triangles.

Let G be the midpoint of CD. Notice, under the spiral similarity N goes to
G. Thus,

∡GBC = ∡NQA = ∡DAX

19
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where X is the intersection of the tangent of (ANQ) from A with CD. Analo-
gously we obtain that ∡DAG = ∡X ′BC.

However, this means that ∡GBX ′ = ∡GAX, thus X and X ′ are the same
point, the intersection of (BAG) with CD.
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Problem 1.12 (IMO 2022 P1)

The Bank of Oslo issues two types of coin: aluminum (denoted A) and
bronze (denoted B). Marianne has n aluminum coins and n bronze coins
arranged in a row in some arbitrary initial order. A chain is any subse-
quence of consecutive coins of the same type. Given a fixed positive integer
k ≤ 2n, Gilberty repeatedly performs the following operation: he identi-
fies the longest chain containing the kth coin from the left and moves all
coins in that chain to the left end of the row. For example, if n = 4
and k = 4, the process starting from the ordering AABBBABA would be
AABBBABA→ BBBAAABA→ AAABBBBA→ BBBBAAAA→ ...

Find all pairs (n, k) with 1 ≤ k ≤ 2n such that for every initial ordering,
at some point of the process there will be at most one aluminium coin
adjacent to a copper coin.

Proof. Obviously it makes sense to split the row into consecutive blocks of coins
of the same type. Then, the fact that at most one aluminium coin is adjacent
to a copper coin is equivelent to there being ≤ 2 blocks. Notice,

Lemma 1.8 The number of blocks decreases or remains constant after
every operation.

Thus, in order to not obtain a situation with ≤ 2 blocks, it must be that the
number of blocks doesn’t change. However, the number of blocks doesn’t change
if and only if, either the pointer is on the first block, or that the pointer is on the
last block. Thus, one of these two conditions must be satisfied after a certain
point in time for infinitely many operations. Thus, a situation stabalizes (i.e.
doesn’t change the number of blocks) if and only if the size of each block is
less than the distance from the pointer to the right end of the row, or that the
pointer points to the first block.

Case 1) Notice, that for n > ⌈ 3n2 ⌉ we can consider four blocks of alternating
coin types with the sizes ⌊n2 ⌋, ⌊

n
2 ⌋, ⌈

n
2 ⌉, ⌈

n
2 ⌉, then the blocks will simply rotate

and there will never be 2 blocks.

Case 2) If k < n, then the configuration of where the first n− 1 coins are of
one time, and then the rest is randomly distributed will never change, thus will
never achieve ≤ 2 blocks.

Case 3) If ⌈ 3n2 ⌉ ≥ k ≥ n, then if there are ≥ 4 blocks the situation won’t
be stable (due to the above). However, a configuration with an odd number of
blocks is never stable, because at some point blocks of the same type will merge.
Thus, the situation will only be stable when the number of blocks is 2, which is
what is required.

Thus, n ≤ k ≤ ⌈ 3n2 ⌉.
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§2 EGMO

Problem 2.1 (EGMO 2025 P1)

For a positive integer N , let c1 < c2 < · · · < cm be all positive integers
smaller than N that are coprime to N . Find all N ⩾ 3 such that

gcd(N, ci + ci+1) ̸= 1

for all 1 ⩽ i ⩽ m− 1
Here gcd(a, b) is the largest positive integer that divides both a and b.

Integers a and b are coprime if gcd(a, b) = 1.

Proof. Notice, that if N is even, then all ci are odd, however that implies that
ci+ ci+1 will always be even, thus never relatively prime with N . Consequently,
every even N satisfies the conditions of the problem statement. If N is odd,
then it is by definition relatively prime to 2, thus,

gcd(N, 1 + 2) ̸= 1 =⇒ 3 | N

Thus, N = 3αx (where x is odd), however,

Case 1) If x ≡ 1 (mod 3), then let us consider two numbers, x+1 and x+3,
then,

gcd(3αx, x+ 1) = 1

gcd(3αx, x− 2) = 1

But, then,
(3αx, 2x− 1) = (3α, 2x− 1) = 1

contradiction!

Case 2) If x ≡ 2 (mod 3), then consider x+ 2 and x− 1, then,®
gcd(3αx, x+ 2) = 1

gcd(3αx, x− 1) = 1

then,
gcd(3αx, 2x+ 1) = gcd(3α, 2x+ 1) = 1

contradiction!

Thus x = 1. Consequently, the only solutions are all even numbers and all
powers of three.
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Problem 2.2 (EGMO 2025 P4)

Let ABC be an acute triangle with incentr I and AB ̸= AC. Let lines
BI and CI intersect the circumcircle of ABC at P ̸= B and Q ̸= C,
respectively. Consider points R and S such that AQRB and ACSP are
parallelograms (with AQ ∥ RB,AB ∥ QR,AC ∥ SP , and AP ∥ CS). Let T
be the point of intersection of lines RB and SC. Prove that points R,S, T ,
and I are concyclic.

Proof. At first it might seem unclear how to prove cyclicity of these four points.

B

A

C

I

P

Q

R

S

T

However, after playing around with some angles it is not difficult to notice,

Lemma 2.1 BITC is cyclic.

This is because,

∠BTC = 180− ∠TBC − ∠TCB = 180− (∠B − ∠ABT )− (∠C − ∠TCA)

= ∠A+ ∠QAB + ∠CAP = ∠A+
∠C
2

+
∠B
2

= 90 +
∠A
2

= ∠BIC (2)

Now, notice,

Lemma 2.2 △IBR ∼ △ICS
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Because, (△IBQ ∼ △ICP )

BI

BR
=

IB

QA
=

IB

BQ
=

IC

CP
=

IC

PA
=

IC

CS

and ∠RBI = ∠ICS since ∠IBT = ∠TCI from ITBC being cyclic. But this
similarity implies that ∠BIR = ∠CIS, thus,

∠RIS = ∠BIC + ∠RIB − ∠ICS = ∠BIC = ∠RTS

Consequently, RITS is cyclic.
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Problem 2.3 (EGMO 2025 P5)

Let n > 1 be an integer. In a configuration of an n × n board, each of the
n2 cells contains an arrow, either pointing up, down, left, or right. Given a
starting configuration, Turbo the snail starts in one of the cells of the board
and travels from cell to cell. In each move, Turbo moves one square unit in
the direction indicated by the arrow in her cell (possibly leaving the board).
After each move, the arrows in all of the cells rotate 90◦ counterclockwise.
We call a cell good if, starting from that cell, Turbo visits each cell of the
board exactly once, without leaving the board, and returns to her initial
cell at the end. Determine, in terms of n, the maximum number of good
cells over all possible starting configurations.

Proof. Notice, if n is odd, then n2 is odd and thus it is impossible to make a
cycle (due to parity).

Let us consider the very edges of the board, the only way to go through
them is using one of the two following algorithms,

→ ←
↗

· · ·

. .
. ...

↑
↑↗· · ·

. .
. ...

where by ↗ I mean either → or ↑. Thus, due to the cycles being uniquely
determined after the turn, it must be due to there being only two ways of
going through the corners, only two global cycles. However, notice that the two
configurations above are not equivelent under the rotation operation, thus there

cannot be more than one global cycle. However, given a cycle there are only n2

4
generators (every fourth element in the cycle).

To achieve this bound, simply consider any global cycle through the entire
board and appropriatly adjust the arrows so that it is a cycle from a given
square. Then, due to the entire board taking the original position after four
rotations, it must be that every fourth element in the cycle is a generator as
well.

Thus, for all odd n there are 0 good cells, however for even n there are n2

4
good cells.
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Problem 2.4 (EGMO 2025 P3)

Let ABC be an acute triangle. Points B,D,E, and C lie on a line in
this order and satisfy BD = DE = EC. Let M and N be the midpoints
of AD and AE, respectively. Suppose triangle ADE is acute, and let H
be its orthocentre. Points P and Q lie on lines BM and CN , respectively,
such that D,H,M, and P are concyclic and pairwise different, and E,H,N,
and Q are concyclic and pairwise different. Prove that P,Q,N, and M are
concyclic.

Proof. Let us reflect C and B over N and M , respectively, then we will obtain
points Y and Z. Let X be the intersect of BM and CN .

B

A

C
D E

M N

H

P
Q

X

Y Z
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Notice,

Lemma 2.3 AZHE is cyclic.

This is because,
∡AHE = ∡EDA = ∡AZE

Now, notice that,
∡AZH = ∡AEH = ∡Y QH

thus Y ZHQ is cyclic, analogously it must be that Y ZPH is cyclic, consequently
Y ZPQH is cyclic. However, because MN ∥ Y Z by Reim’s lemma it must be
that MNPQ is cyclic.
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Problem 2.5 (EGMO 2024 P2)

Let ABC be a triangle with AC > AB , and denote its circumcircle by
Ω and incentre by I. Let its incircle meet sides BC,CA,AB at D,E, F
respectively. Let X and Y be two points on minor arcs D̂F and D̂E of the
incircle, respectively, such that ∠BXD = ∠DY C. Let line XY meet line
BC at K. Let T be the point on Ω such that KT is tangent to Ω and T is
on the same side of line BC as A. Prove that lines TD and AI meet on Ω.

B

A

CD

F

X

Y

K

T

W

I

Proof. Notice,

∡BXY = ∡BXD + ∡DXY = ∡DY C + ∡CDY = ∡BCY

Thus, the wierd condition that ∡BXD = ∡DY C is simply equivelent to BXYC
being cyclic. However, notice that as we move X on the incircle, if we define Y
to be the intersection of (BXC) with the incircle, then XY passes through a
constant point. This is simply due to the power of the point, if a ray through
K intersects the incircle at X ′ and Y ′, then,

KC ·KB = KX ·KY = KX ′ ·KY ′

thus, BX ′Y ′C is cyclic. Consider a circle tangent to KT at T which passes
through D, assume that it passes through another point on BC, let it be D′,
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then,
KD ·KD′ = KT 2 = KX ·KY

however KD2 = KX ·KY , thus D = D′. Thus, a circle exists which is tangent
to TK at T and which is tangent to BC at D, however then by the Shooting

lemma it must be that DT passes through the midpoint of the arc B̃C.

Thus, AI and TD intersect on Ω, exactly at the midpoint of the arc B̃C.
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§3 Korean National Olympiad

Problem 3.1 (Korea 2025 P4)

Triangle ABC satisfies CA > AB. Let the incenter of triangle ABC be
ω, which touches BC,CA,AB at D,E, F , respectively. Let M be the mid-
point of BC. Let the circle centered at M passing through D intersect
DE,DF at P ( ̸= D), Q(̸= D), respecively. Let line AP meet BC at N , line
BP meet CA at L. Prove that the three lines EQ,FP,NL are concurrent.

Proof. Let us start by proving that A,P,Q are colinear. Let us define P as the
intersection of AI and DE, then we must prove that MPD is isoseles.

A

B CD

E

F

M

P

Q

K

I

L

N

This can be easily shown by angle chase, let us introduce K, the midpoint of
AB it is well known that then K,M,P are colinear and ∠BPA = 90. Thus,

∠MPD = ∠APD + ∠KPA = ∠IBC + ∠PAC =
∠A+ ∠B

2

=
180− ∠C

2
= ∠EDC = ∠MDP (3)
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Thus, it must be that P lies on AI, the exact same logic shows that Q ∈ AI,
thus, A, I,Q and P are colinear.

Now, notice that under reflection over AI the line FQ goes to EQ and the
line LN goes to BN (since ∠APB = 90 it must be that B goes to L under
reflection) and PF goes to PE. Thus, EQ, LN and PF are concurrent, and
the intersection point is the reflection of D over AI.
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